

LA-UR-18-26216

Approved for public release; distribution is unlimited.

Title: Integrated Microfluidic Device for Real-Time: Reservoir Fluid Analysis

Author(s): Nguyen, Thanh Phong

Intended for: Report

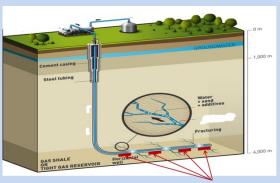
Issued: 2018-07-10

Integrated Microfluidic Device for Real-Time Reservoir Fluid Analysis

BACKGROUND & MOTIVATION

Current methods of reservoir fluid chemical analysis and monitoring have many issues including time consuming, expensive, inadequate data collection, time lapse, difficulty in sample preservation and transport.

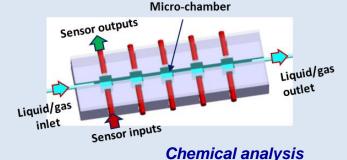
Fluid sampling



Lab analysis

INNOVATION

An integrated multi-channel array microfluidic device with optical spectroscopy and electrochemical sensors.



Micro devices for reservoir fluid analysis

DESCRIPTION

A microfluidic device with integrated optical spectroscopy for chemical analysis and electrochemical sensors for pH and salinity measurements of in-situ reservoir fluids.

How it works:

Optical spectroscopy UV, Vis, IR, and Raman

Electrochemical pH and salinity measurements sensors

TRL 3: Microfluidic chip platform has been fabricated and tested in subsurface engineering applications.

ANTICIPATED IMPACT

Real time reservoir fluid analysis will improve reservoir management and production optimization

PATH FORWARD

- Fabricate integrated device prototype
- Lab testing of prototype
- Field testing of prototype
- Build and test commercial devices

Potential End Users:

Oil and gas companies

Point of Contact: (Phong Nguyen, PhD 505-667-9419, pnguyen@lanl.gov)